Key Takeaways from the RGX-314 Phase I/IIa Clinical Trial for Wet AMD (Cohorts 1-5)

Jeffrey Heier, MD

Peter Campochiaro, MD, Allen Ho, MD, Albert Maguire, MD, David M. Brown, MD, Robert Avery, MD, Dante Pieramici, MD, Szilard Kiss, MD, Arshad Khanani, MD, Charles Wykoff, MD, Samir Patel, MD, Keunpyo Kim, PhD, Darin Curtiss, PharmD, Stephen Pakola, MD, Sherri Van Everen, PharmD

AAO Retina Subspecialty Days 10/11/2019
Disclosures

Research grants: Aerie, Aerpio, Apellis, Clearside, Daiichi, Genentech/Roche, Graybug, Gyroscope, Hemera, Janssen R&D, KalVista, Kanghong, Novartis, Ophthotech, Optos, Optovue, Regeneron, Regenxbio, Stealth Biotherapeutics, Thrombogenics, Tyrogenex

Scientific Advisor: 4DMT, Adverum, Aerie, Aerpio, Aldeyra, Alkahest, Allegro, Allergan, Annexon, Apellis, Array, Asclepix, Eloxx, Galimedix, Genentech/Roche, Generation Bio, Interface, iRenix, Janssen R&D, jCyte, Kala, Kanghong, Kodiak, NGM Biopharmaceuticals, Notal Vision, Novartis, Ocugenix, Ocular Therapeutix, Omeicos, Orbit/Gyroscope, Regeneron, Regenxbio, Retrotepe, Santen, Scifluor, Shire, Stealth Biotherapeutics, Takeda, Voyant

Board of Directors: Ocular Therapeutix

Equity: Adverum, Aldeyra, Allegro, jCyte, and Ocular Therapeutix
RGX-314 Uses a Novel AAV8 Vector to Deliver an anti-VEGF Fab

1. Vandenberghe et al. 2011 Science Translational Medicine

RGX-314 is Designed to Deliver a Gene Encoding for an anti-VEGF fab Protein

AAV2

AAV8

More Efficient Gene Delivery to the RPE

NAV AAV8 Vector

Gene Encoding for anti-VEGF fab

Cell

anti-VEGF fab Protein

Nucleus

RPE

RNA
RGX-314 Phase I/IIa wAMD Study Has Fully Enrolled 5 Dose Cohorts

Baseline assessment	Treatment evaluation	Follow up
anti–VEGF injection | SD–OCT assessment | Anti–VEGF PRN Rescue Injection Criteria

Previously Treated Subjects Requiring Frequent Injections

1. Dose escalation safety review to occur four weeks after final subject in each cohort has been dosed
SD-OCT = spectral domain optical coherence tomography
Anti-VEGF Retreatment Allowed for Any Fluid or Disease Activity

Anti-VEGF may be given beginning 4 weeks post-treatment and PRN every 4 weeks thereafter per investigator’s discretion if one or more of the criteria apply:

- CNV-related increased, new, or persistent fluid
- Vision loss of ≥5 letters associated with fluid
- New ocular hemorrhage
Subjects Enrolled in the Phase I/IIa Trial Were Chronically Treated

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cohort 1 (n=6)</th>
<th>Cohort 2 (n=6)</th>
<th>Cohort 3 (n=6)</th>
<th>Cohort 4 (n=12)</th>
<th>Cohort 5 (n=12)</th>
<th>Total (n=42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (Years)</td>
<td>78.2</td>
<td>78.0</td>
<td>80.0</td>
<td>80.3</td>
<td>81.6</td>
<td>80.0</td>
</tr>
<tr>
<td>Baseline BCVA (Snellen equivalents)</td>
<td>53.7 (20/100)</td>
<td>50.7 (20/100)</td>
<td>54.7 (20/80)</td>
<td>61.3 (20/63)</td>
<td>54.3 (20/80)</td>
<td>55.7 (20/80)</td>
</tr>
<tr>
<td>Baseline OCT (reading center)</td>
<td>361.7 (n=6)</td>
<td>413.2 (n=6)</td>
<td>359.8 (n=6)</td>
<td>411.3 (n=12)</td>
<td>418.3 (n=12)</td>
<td>399.1 (n=42)</td>
</tr>
<tr>
<td>Baseline serum AAV8 Nab+ with titer >1:10 (%)</td>
<td>2 (33.3%)</td>
<td>3 (50.0%)</td>
<td>4 (66.7%)</td>
<td>4 (33.3%)</td>
<td>5 (41.7%)</td>
<td>18 (42.9%)</td>
</tr>
<tr>
<td>Months Since First anti-VEGF Injection</td>
<td>53.5</td>
<td>59.3</td>
<td>71.7</td>
<td>58.1</td>
<td>45.9</td>
<td>56.1</td>
</tr>
<tr>
<td># Injections Since Diagnosis (Mean)</td>
<td>40.7</td>
<td>32.5</td>
<td>34.2</td>
<td>35.7</td>
<td>26.7</td>
<td>33.1</td>
</tr>
<tr>
<td>Average Annualized Injections Prior to Entry</td>
<td>9.6</td>
<td>10.5</td>
<td>6.8</td>
<td>10.2</td>
<td>9.9</td>
<td>9.6</td>
</tr>
</tbody>
</table>
RGX-314 Has Been Well Tolerated in All Cohorts

- RGX–314 was **well-tolerated** (n=42)

- **No drug-related SAEs**

- Most AEs were assessed as mild (Grade 1 – 79%)

- **No observed clinically determined immune responses**, drug-related ocular inflammation, or any post-surgical inflammation beyond what is expected following routine vitrectomy

- **Fifteen SAEs** that were not drug-related were **reported in nine subjects**
 - **Two deaths unrelated to RGX-314**
 - **Two ocular procedure-related SAEs**: peripheral retinal detachment which was repaired and an endophthalmitis post aqueous sample collection

* Data cut October 9, 2019
Dose Dependent Increase in RGX-314 Protein Observed Across Cohorts

As Measured from Aqueous Samples by ECL 1 Month post-RGX-314

1. N=5; one subject in Cohort 1 did not have aqueous sample taken at Week 6
2. One subject’s protein concentration measured at Day 17 post RGX-314 administration (no 4 week sample available)
Cohort 3: Sustained Visual and Anatomic Outcomes over 1.5 years

1. One subject in Cohort 1 discontinued from the study at four months with four injections and was imputed as requiring one injection per every 4 weeks visit.
Cohort 3: Injection-free Subjects Continue to Do Well Over 1.5 Years

Anti-VEGF Injection-free Subjects (n= 3 of 6)

Sustained RGX-314 Protein Levels Over 1 Year

- Mean RGX-314 Protein (ng/mL) over time:
 - Month 1: 236.2 ng/mL
 - Month 6: 274.9 ng/mL
 - 1 Year: 260.5 ng/mL

Best Corrected Visual Acuity (BCVA)

+11 letters

Central Retinal Thickness (CRT) on Heidelberg SD-OCT

-21 µm
Cohort 4: Visual and Anatomic Outcomes

Best Corrected Visual Acuity (BCVA)

- Stable to improved vision and OCT on average
- 42% (5 of 12) injection-free at 6 months
- 2 patients with incomplete response to anti-VEGF receiving monthly injections

Central Retinal Thickness (CRT) on Heidelberg SD-OCT*

- SD-OCT data read by a central reading center (Duke Reading Center).

2.2 inj / 6 mo

Cohort 4 (n=12)
Cohort 5: Visual and Anatomic Outcomes

- Stable to improved vision and OCT on average
- 75% (9 of 12) injection free at 5-6 months
- Highest clinical response observed

Best Corrected Visual Acuity (BCVA)

Central Retinal Thickness (CRT) on Heidelberg SD-OCT*

- SD-OCT data read by a central reading center (Duke Reading Center).
- 1 subject discontinued after 4 months

0.8 inj / 5 - 6 mo
Cohort 4 and Cohort 5: Anti-VEGF Injection-free Subjects

Best Corrected Visual Acuity (BCVA)

Central Retinal Thickness (CRT) on Heidelberg SD-OCT*

- SD-OCT data read by a central reading center (Duke Reading Center).
Cohort 5: Injections Pre and Post RGX-314 (n=12)

Subject #1 discontinued after 4 months * Data cut October 9, 2019
Case A: Subject History Prior to RGX-314
Case A:
13 Injections in Year
Prior with 0 Rescue
Injections after
RGX-314

Age: 87
Total prior anti-VEGF hx: 40
Last year anti-VEGF: 13
Rescue Inj in Study: 0
Case B:
8 Injections in Year Prior with 0 Rescue Injections after RGX-314

Age: 86
Total prior anti-VEGF hx: 20
Last year anti-VEGF: 8
Rescue Inj in Study: 0

Cohort 5
2.5x10^{11} GC/eye
RGX-314 Program Next Steps

- wAMD moving to Phase IIb Study by the end of the year
- Diabetic Retinopathy IND by end of the year
- Expanding to evaluate SCS delivery using Clearside’s proprietary, in-office SCS Microinjector™
Key takeaways from the RGX-314 Phase I/IIa wAMD Clinical Trial

- RGX-314 Phase I/IIa wAMD study has fully enrolled 42 patients in 5 dose cohorts
- Patients enrolled were severe wAMD requiring frequent anti-VEGF injections
- Subretinal RGX-314 was well tolerated in 5 dose Cohorts
- Dose dependent increase in ocular protein observed across cohorts
- Cohort 3: subjects continue to demonstrate good vision and anatomic outcomes over 1.5 years
- Cohort 4: reduction in injection burden with stable to improved anatomic and visual outcomes
- Cohort 5: highest clinical response observed with 75% of subjects injection-free with stable to improved anatomic and visual outcomes*
- RGX-314 moving into Phase IIb trial for wet AMD, Phase II diabetic retinopathy trial, and in-office suprachoroidal delivery via SCS Microinjector™

* Data cut October 9, 2019
Acknowledgments

- Robert Avery, MD (Santa Barbara, CA)
- David Brown, MD (Houston, TX)
- Peter Campochiaro, MD (Baltimore, MD)
- Jorge Calzada, MD (Memphis, TN)
- Jeff Heier, MD (Boston, MA)
- Allen Ho, MD (Philadelphia, PA)
- Arshad Khanani, MD (Reno, NV)
- Albert Maguire, MD (Philadelphia, PA)
- Dante Pieramici, MD (Santa Barbara, CA)
- Charles Wykoff, MD PhD (Houston, CA)
- Szilard Kiss, MD (New York, NY)
- Sherri Van Everen, PharmD (REGENXBIO)
- Darin Curtiss, PharmD (REGENXBIO)
- Stephen Pakola, MD (REGENXBIO)
Supplemental Information
Mean Change in Annualized Injection Rate Pre and Post RGX-314: >80% Reduction in Cohort 5

Comparison of injection rate PRIOR and POST RGX-314

*Prior annual rate is (Total # of prior IVTs)/(minimum(366 days, Duration between first ever IVT and Day 1))/365.25. Post RGX-314 annual rate is (Total # of IVTs on Study)/(Duration on Study/365.25) where on Study is from RGX-314 administration through 18 months for C1-C3 and up to 6 months for C4 –C5.
RGX-314: Standardized Automated Subretinal Delivery Procedure

Step 1 – Vitrectomy
- Standard small gauge vitrectomy to perform a core vitrectomy
- Automated delivery with a MedOne subretinal cannula attached to the vitrectomy machine

Step 2 – Subretinal Injection
- Inject 250μl to create subretinal bleb in a healthy area of retina
- Target superior to the superotemporal arcade vessel or outside the arcades
- Can create another bleb area if needed
- Keep margin of the bleb at least 2DA away from the fovea

Performed Under Local Anaesthesia in the OR

Air fluid exchange and then **Sub-conj steroid injection** at the end of procedure
(No systemic steroids used in protocol)
No positioning mandated and patient is discharged home with follow-up the next day
Case C:
12 Injections in Year Prior with 0 Rescue Injections after RGX-314

Age: 80
Total prior anti-VEGF hx: 20
Last year anti-VEGF: 12
Rescue Inj in Study: 0